Hekaton il
Tidying up SQL Sgiv

IVERSITY OF

Cristian Diaconu, et. al. Michael Abebe WATERLOO
SIGMOD 2013 CS 848 (January 2018)

1

#1

NEW YORK TIMES
BEST SELLER
9 MILLION
COPIES SOLD

the life-changing
magic of tidying up
the Japanese art of decluttering

and organizing

marie kondo

%

UNIVERSITY OF

WATERLOO

% WATERLOO

2006 Databases”

locks

—~— a[]

Threads Buffer pool

disk

—

IIIIIIIIIIII

1970s Databases

Designed to mask disk latency

locks disk

~—al][]

Threads Buffer pool

IIIIIIIIIIII

1970s Hardware

~1 MB

E@I ~100 ms seek

IIIIIIIIIIII

2000 Hardware

10-100 GB
10,000 x

.@. ~10 ms seek
lp
10 x

IIIIIIIIIIII

2006 Databases”

10-100 GB

50 byte records
120 months

10 million users =

60 GB
Data fits in memory

IIIIIIIIIIII

% WATERLOO

2006 Databases”

Increased contention
locks disk

—~— a7

Threads Buffer pool

IIIIIIIIIIII

2006 Databases”

How to ensure correctness?

—_
—
—

Threads Buffer pool

IIIIIIIIIIII

Discarding Everything

The End of an Architectural Era
(It’s Time for a Complete Rewrite)

St

{sto
st

ABST

In previous
of “one sizg
These paper]
showed that
1-2 orders
warehouse,
markets.

OLTP Through the Looking Glass, and What We Found There

Stavros Harizopoulos Daniel J. Abadi Samuel Madden Michael Stonebraker

HP Labs
Palo Alto, CA

stavros@hp.com

Yale University
New Haven, CT

dna@cs.yale.edu

ABSTRACT

Online Transaction Processing (OLTP) databases include a suite
of features — disk-resident B-trees and heap files, locking-based
concurrency control, support for multi-threading — that were
optimized for computer technology of the late 1970’s. Advances
in modern processors, memories, and networks mean that today’s
computers are vastly different from those of 30 years ago, such
that many OLTP databases will now fit in main memory, and
most OLTP transactions can be processed in milliseconds or less.
Yet database architecture has changed little.

B ool ; | . . . :

Massachusetts Institute of Technology
Cambridge, MA

{madden, stonebraker}@csail.mit.edu

1. INTRODUCTION

Modern general purpose online transaction processing (OLTP)
database systems include a standard suite of features: a collection
of on-disk data structures for table storage, including heap files
and B-trees, support for multiple concurrent queries via locking-
based concurrency control, log-based recovery, and an efficient
buffer manager. These features were developed to support trans-
action processing in the 1970’s and 1980’s, when an OLTP data-
base was many times larger than the main memory, and when the
computers that ran these databases cost hundreds of thousands to
millions of dollars.

UNIVERSITY OF

A WATERLOO

D

Partitioned Execution

- ~— [L[IT]

Execute serially Partition

-~ [

T — [T T T 1 Execution thread
T N— [[TT] perparttion
- ~— [[IT]

IIIIIIIIIIII

Partitioned Execution
Tput = (1 Core Tput) x (# Cores)

—_
—_

[]
[]
o~ [
[]

IIIIIIIIIIII

Partitioned Execution
Multi-partition transactions?

Costly coordination

IIIIIIIIIIII

Partitioned Execution
Multi-partition transactions?

Tput = (1 Core Tput) x Scalability

—
—_

—
—

[]
[]

]
[]

(# Cores)

\

Based on
partition quality

IIIIIIIIIIII

How to improve throughput?

(# Cores)

Tput = (1 Core Tput) x Scalability

Eliminate instructions

Elirr

E

Inate contention
iminate locks

IIIIIIIIIIII

Hekaton

[Compiler] Eliminate instructions

[Runtime]

Eliminate locks

: Storage -
_ Engine

IIIIIIIIIIII

Discard

anything

that does

not bring

you joy

unless It

makes you money

IIIIIIIIIIII

A WATERLOO

Hekaton in SQL Server

[Compiler] [Metadata }

“Runtime | [Optimizer}

p \ [Processor}
Storage

_ Engine ~ Storage |

IIIIIIIIIIII

Hekaton

[Compiler] Eliminate instructions

[Runtime]

Eliminate locks

IIIIIIIIIIII

Indexes

22

Lock free: Hash Table and B-Tree

The Bw-Tree: A B-tree for New Hardware
Platforms

Building a Bw-Tree Takes More Than Just Buzz Words

Viktor Leis
TU Minchen
leis@in.tum.de

Ziqi Wang Andrew Pavlo Hyeontaek Lim
Carnegie Mellon University =~ Carnegie Mellon University =~ Carnegie Mellon University
zigiw@cs.cmu.edu pavlo@cs.cmu.edu hl@cs.cmu.edu

1justin.

Abstract— The emer:
led to reconsideration
designed. However, ce
access to records remaj
architectural layering
design decisions about
the Bw-tree achieves i
approach that effective
multi-core chips. Our s
structuring that blurs t
store and works well w
architecture and algori
memory aspects. The
that demonstrate that
performance.

Huanchen Zhang
Carnegie Mellon University
huanchel@cs.cmu.edu

ABSTRACT

In 2013, Microsoft Research proposed the Bw-Tree (humorously
termed the “Buzz Word Tree”), a lock-free index that provides high
throughput for transactional database workloads in SQL Server’s
Hekaton engine. The Bw-Tree avoids locks by appending delta
record to tree nodes and using an indirection layer that allows it to

atomically update physical pointers using compare-and-swap (CaS).

Correctly implementing this techniques requires careful attention
to detail. Unfortunately, the Bw-Tree papers from Microsoft are

missing important details and the source code has not been released.

This paper has two contributions: First, it is the missing guide
for how to build a lock-free Bw-Tree. We clarify missing points in
Microsoft’s original design documents and then present techniques
to improve the index’s performance. Although our focus here is on

Michael Kaminsky
Intel Labs
michael.e kaminsky @intel.com

David G. Andersen
Carnegie Mellon University

dga@cs.cmu.edu

usually not explicitly stated in the serial version of the algorithm.
Programmers often implement lock-free algorithms incorrectly
and end up with busy-waiting loops. Another challenge is that
lock-free data structures require safe memory reclamation that is
delayed until all readers are finished with the data. Finally, atomic
primitives can be a performance bottleneck themselves if they are
used carelessly.

One example of a lock-free data structure is the Bw-Tree from
Microsoft Research [29]. The high-level idea of the Bw-Tree is
that it avoids locks by using an indirection layer that maps logical
identifiers to physical pointers for the tree’s internal components.
Threads then apply concurrent updates to a tree node by appending
delta records to that node’s modification log. Subsequent operations
on that node must replay these deltas to obtain its current state.

2 WATERLOO

Storage Engine
Links Payload

— /J | l‘ | John | London 880
o L1 [| [Jane | Paris |89
: Eliminate locks

N T T [I}

IIIIIIIIIIII

Storage Engine

|~

5/1

N

Links Payload

lv] | John | London | $80

‘ ‘ ‘ Jane ‘ Paris ‘$99

Eliminate locks

‘I‘I‘ Larry‘ Rome ‘$75

Larry ‘ Rome ‘$70‘

IIIIIIIIIIII

Storage Engine
Links Payload

—/ | ‘U | John | London | $80
) ‘ ‘ ‘ ‘ ‘ Jane ‘ Paris ‘$99
Which to read? It depends!

L - |
_\l ‘ uj_u Larry ‘ Rome ‘$75 |‘

‘ ‘ ‘ ‘ ‘ Larry‘ Rome ‘$70‘

IIIIIIIIIIII

Hekaton

[Compiler] Eliminate instructions

[Runtime]

Eliminate locks

: Storage \
_ Engine |

IIIIIIIIIIII

Concurrency Control

J

Which to read? It depends!

N

Links Payload

| [y| | John | London | $80

| | | | Jane | Paris |$99

| uj_u Larry | Rome | $75 [

|| | | Larry | Rome [$70]

IIIIIIIIIIII

Concurrency Control

Timestamps Links Payload

N

L

lv] | John | London | $80

‘ ‘ ‘ Jane ‘ Paris ‘$99

0 | 20

_J_U Larry ‘ Rome ‘$75 |‘

20 | =

| | Larry | Rome |$70]

IIIIIIIIIIII

Concurrency Control

Timestamps Links Payload
— ! 5 ‘ 00 ‘ ‘ ‘ John ‘ London ‘$80
N ‘ 7 ‘ 00 ‘ ‘ ‘ Jane ‘ Paris ‘$99
—1 1 0 | 20 | J_U Larry | Rome | $75

1 20| = | | | Larry | Rome |$70]

IIIIIIIIIIII

Concurrency Control
Timestamps Links Payload
| 0 |20 | | | Larry | Rome [$75|

Determine record visibility by valid
time (begin and end : ion
e Snapshot ‘so‘ﬁov
Assign transactions: Se\"\a\‘zab‘ Iy
Logical Read Time --- for visibility
Commit time --- for serialization history

IIIIIIIIIIII

Concurrency Control
Serializability requires:
No updates to read records

Scans do not return new versions

Validate at commit time!
Authors claim this is cheap

IIIIIIIIIIII

Concurrency Control

High-Performance Concurrency Control

Mechanisms for Main-Memory Databases

Per-Ake Larson', Spyros Blanas?, Cristian Diaconu’,
Craig Freedman’, Jignesh M. Patel?, Mike Zwilling’

Microsoft', University of Wisconsin — Madison®
{palarson, cdiaconu, craigfr,mikezw}@microsoft.com, {sblanas, jignesh}@cs.wisc.edu

ABSTRACT

A database system optimized for in-memory storage can support
much higher transaction rates than current systems. However,
standard concurrency control methods used today do not scale to
the high transaction rates achievable by such systems. In this pa-
per we introduce two efficient concurrency control methods spe-
cifically designed for main-memory databases. Both use multiver-
sioning to isolate read-only transactions from updates but differ in
how atomicity is ensured: one is optimistic and one is pessimistic.
To avoid expensive context switching, transactions never block
during normal processing but they may have to wait before com-
mit to ensure correct serialization ordering. We also implemented
a main-memory optimized version of single-version locking. Ex-
perimental results show that while single-version locking works
well when transactions are short and contention is low perfor-
mance degrades under more demanding conditions. The multiver-
sion schemes have higher overhead but are much less sensitive to
hotspots and the presence of long-running transactions.

found that traditional single-version locking is “fragile”. It works
well when all transactions are short and there are no hotspots but
performance degrades rapidly under high contention or when the
workload includes even a single long transaction.

Decades of research has shown that multiversion concurrency
control (MVCC) methods are more robust and perform well for a
broad range of workloads. This led us to investigate how to con-
struct MVCC mechanisms optimized for main memory settings.
We designed two MVCC mechanisms: the first is optimistic and
relies on validation, while the second one is pessimistic and relies
on locking. The two schemes are mutually compatible in the sense
that optimistic and pessimistic transactions can be mixed and
access the same database concurrently. We systematically ex-
plored and evaluated these methods, providing an extensive ex-
perimental evaluation of the pros and cons of each approach. The
experiments confirmed that MVCC methods are indeed more
robust than single-version locking.

This paper makes three contributions. First, we propose an opti-

% WATERLOO

Other Details in Paper

» Commit dependencies
* Durability

» (Garbage Collection

IIIIIIIIIIII

Hekaton

[Compiler] Eliminate instructions

| Runtime |

Eliminate locks

: Storage \
_ Engine |

IIIIIIIIIIII

Interpreters
SELECT * FROM TWHERE T.ID > @id SQL

SCAN T

!
FILTER T.ID > @id

¢
Query Plan

IIIIIIIIIIII

Interpreters
SELECT * FROM TWHERE T.ID > @id SQL

filter::getNext()
for (5;)
row = child.getNext()
if | filter(row)
return row Easy to read

Recursive calls

IIIIIIIIIIII

Query Execution

Hekaton Compiler
SELECT * FROM TWHERE T.ID > @id SQL

label: filter_getNext Minimize
for (;;)

goto scan_getNext| Instructions

if 1 filter(row)
goto output Hard to read

IIIIIIIIIIII

Query Execution

Hekaton Compiler

Payload
‘ ‘ ‘ ‘ ‘ Larry‘ Rome ‘$75‘

Storage engine has no knowledge of
records structures

Compile structures at table creation time

IIIIIIIIIIII

Other Details in Paper

* Cvs. SQL type challenges

* Interoperability with SQL
Server

IIIIIIIIIIII

Does it Work?
Hekaton compared to SQL Server:
10 — 20X reduction in CPU cycles
15X improvement in throughput

Near linear scalability

IIIIIIIIIIII

Hekaton
Eliminates locks and instructions by
Lock free data structures
Optimistic concurrency control
Compiled C code for stored procs

Completely within SQL Server!

IIIIIIIIIIII

Hekaton Today

Ahmed Eldawy*
University of Minnesota
eldawy@cs.umn.edu

Trekking Through Siberia: Managing Cold Data in a
Memory-Optimized Database

Justin Levandoski
Microsoft Research
justin.levandoski@microsoft.com

Per-Ake Larson
Microsoft Research
palarson@microsoft.com

ABSTRA

Main memori
databases can
be the best s
access pattern|
but many reco
more econom
such as flash
managing co
database engi
storage while
hot and cold

how queries

stored in bo
minimizing ni
records can

DBMS is onlij
access rates af
incur an accef

Real-Time Analytical Processing with SQL Server

Per-Ake Larson, Adrian Birka, Eric N. Hanson,
Weiyun Huang, Michal Nowakiewicz, Vassilis Papadimos
Microsoft
{palarson, adbirka, ehans, weiyh, michalno, vasilp}@microsoft.com

ABSTRACT

Over the last two releases SQL Server has integrated two special-
ized engines into the core system: the Apollo column store engine
for analytical workloads and the Hekaton in-memory engine for
high-performance OLTP workloads. There is an increasing demand
for real-time analytics, that is, for running analytical queries and
reporting on the same system as transaction processing so as to have
access to the freshest data. SQL Server 2016 will include enhance-
ments to column store indexes and in-memory tables that signifi-
cantly improve performance on such hybrid workloads. This paper
describes four such enhancements: column store indexes on in-
memory tables, making secondary column store indexes on disk-
based tables updatable, allowing B-tree indexes on primary column
store indexes, and further speeding up the column store scan oper-
ator.

which is clearly prohibitively expensive. Vice versa, lookups are
very fast in in-memory tables but complete table scans are expen-
sive because of the large numbers of cache and TLB misses and the
high instruction and cycle count associated with row-at-a-time pro-
cessing.

This paper describes four enhancements in the SQL Server 2016
release that are designed to improve performance on analytical que-
ries in general and on hybrid workloads, in particular.

1. Columnstore indexes on in-memory tables. Users will be
able to create columnstore indexes on in-memory tables in the
same way as they can now for disk-based tables. The goal is
to greatly speed up queries that require complete table scans.

2. Updatable secondary columnstore indexes. Secondary CSIs
on disk-based tables were introduced in SQL Server 2012.

ool Thac 100

UNIVERSITY OF

% WATERLOO

Hekaton Discussion
Ruling out partitioning

Overhead of commit validation

Integration with SQL Server
(must explicitly declare

table types)

IIIIIIIIIIII

% WATERLOO

