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1970s Databases

Designed to mask disk latency
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1970s Hardware
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2000 Hardware
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2006 Databases”

10-100 GB

50 byte records
120 months

10 million users =

60 GB
Data fits in memory
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2006 Databases”

Increased contention
locks disk
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2006 Databases”

How to ensure correctness?
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Discarding Everything

The End of an Architectural Era
(It’s Time for a Complete Rewrite)
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OLTP Through the Looking Glass, and What We Found There
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ABSTRACT

Online Transaction Processing (OLTP) databases include a suite
of features — disk-resident B-trees and heap files, locking-based
concurrency control, support for multi-threading — that were
optimized for computer technology of the late 1970’s. Advances
in modern processors, memories, and networks mean that today’s
computers are vastly different from those of 30 years ago, such
that many OLTP databases will now fit in main memory, and
most OLTP transactions can be processed in milliseconds or less.
Yet database architecture has changed little.
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1. INTRODUCTION

Modern general purpose online transaction processing (OLTP)
database systems include a standard suite of features: a collection
of on-disk data structures for table storage, including heap files
and B-trees, support for multiple concurrent queries via locking-
based concurrency control, log-based recovery, and an efficient
buffer manager. These features were developed to support trans-
action processing in the 1970’s and 1980’s, when an OLTP data-
base was many times larger than the main memory, and when the
computers that ran these databases cost hundreds of thousands to
millions of dollars.
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Partitioned Execution
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Partitioned Execution
Tput = ( 1 Core Tput ) x (# Cores )
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Partitioned Execution
Multi-partition transactions?

Costly coordination
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Partitioned Execution
Multi-partition transactions?

Tput = ( 1 Core Tput ) x Scalability
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How to improve throughput?

(# Cores )

Tput = ( 1 Core Tput ) x Scalability
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Hekaton
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Hekaton in SQL Server
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Indexes
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Lock free: Hash Table and B-Tree

The Bw-Tree: A B-tree for New Hardware
Platforms

Building a Bw-Tree Takes More Than Just Buzz Words
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ABSTRACT

In 2013, Microsoft Research proposed the Bw-Tree (humorously
termed the “Buzz Word Tree”), a lock-free index that provides high
throughput for transactional database workloads in SQL Server’s
Hekaton engine. The Bw-Tree avoids locks by appending delta
record to tree nodes and using an indirection layer that allows it to

atomically update physical pointers using compare-and-swap (CaS).

Correctly implementing this techniques requires careful attention
to detail. Unfortunately, the Bw-Tree papers from Microsoft are

missing important details and the source code has not been released.

This paper has two contributions: First, it is the missing guide
for how to build a lock-free Bw-Tree. We clarify missing points in
Microsoft’s original design documents and then present techniques
to improve the index’s performance. Although our focus here is on
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David G. Andersen
Carnegie Mellon University

dga@cs.cmu.edu

usually not explicitly stated in the serial version of the algorithm.
Programmers often implement lock-free algorithms incorrectly
and end up with busy-waiting loops. Another challenge is that
lock-free data structures require safe memory reclamation that is
delayed until all readers are finished with the data. Finally, atomic
primitives can be a performance bottleneck themselves if they are
used carelessly.

One example of a lock-free data structure is the Bw-Tree from
Microsoft Research [29]. The high-level idea of the Bw-Tree is
that it avoids locks by using an indirection layer that maps logical
identifiers to physical pointers for the tree’s internal components.
Threads then apply concurrent updates to a tree node by appending
delta records to that node’s modification log. Subsequent operations
on that node must replay these deltas to obtain its current state.
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Concurrency Control
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Concurrency Control

Timestamps Links Payload
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Concurrency Control
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Concurrency Control
Timestamps Links Payload
| 0 |20 | | | Larry | Rome [$75|
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Concurrency Control
Serializability requires:
No updates to read records

Scans do not return new versions

Validate at commit time!
Authors claim this is cheap
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Concurrency Control

High-Performance Concurrency Control

Mechanisms for Main-Memory Databases

Per-Ake Larson', Spyros Blanas?, Cristian Diaconu’,
Craig Freedman’, Jignesh M. Patel?, Mike Zwilling’

Microsoft', University of Wisconsin — Madison®
{palarson, cdiaconu, craigfr,mikezw}@microsoft.com, {sblanas, jignesh}@cs.wisc.edu

ABSTRACT

A database system optimized for in-memory storage can support
much higher transaction rates than current systems. However,
standard concurrency control methods used today do not scale to
the high transaction rates achievable by such systems. In this pa-
per we introduce two efficient concurrency control methods spe-
cifically designed for main-memory databases. Both use multiver-
sioning to isolate read-only transactions from updates but differ in
how atomicity is ensured: one is optimistic and one is pessimistic.
To avoid expensive context switching, transactions never block
during normal processing but they may have to wait before com-
mit to ensure correct serialization ordering. We also implemented
a main-memory optimized version of single-version locking. Ex-
perimental results show that while single-version locking works
well when transactions are short and contention is low perfor-
mance degrades under more demanding conditions. The multiver-
sion schemes have higher overhead but are much less sensitive to
hotspots and the presence of long-running transactions.

found that traditional single-version locking is “fragile”. It works
well when all transactions are short and there are no hotspots but
performance degrades rapidly under high contention or when the
workload includes even a single long transaction.

Decades of research has shown that multiversion concurrency
control (MVCC) methods are more robust and perform well for a
broad range of workloads. This led us to investigate how to con-
struct MVCC mechanisms optimized for main memory settings.
We designed two MVCC mechanisms: the first is optimistic and
relies on validation, while the second one is pessimistic and relies
on locking. The two schemes are mutually compatible in the sense
that optimistic and pessimistic transactions can be mixed and
access the same database concurrently. We systematically ex-
plored and evaluated these methods, providing an extensive ex-
perimental evaluation of the pros and cons of each approach. The
experiments confirmed that MVCC methods are indeed more
robust than single-version locking.

This paper makes three contributions. First, we propose an opti-
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Other Details in Paper

» Commit dependencies
* Durability

» (Garbage Collection
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Interpreters
SELECT * FROM TWHERE T.ID > @id SQL

SCAN T

!
FILTER T.ID > @id

¢
Query Plan
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Interpreters
SELECT * FROM TWHERE T.ID > @id SQL

filter::getNext( )
for (5;)
row = child.getNext( )
if | filter( row )
return row Easy to read

Recursive calls
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Query Execution



Hekaton Compiler
SELECT * FROM TWHERE T.ID > @id SQL

label: filter_getNext Minimize
for (;;)

goto scan_getNext| Instructions

if 1 filter( row )
goto output Hard to read
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Hekaton Compiler

Payload
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Storage engine has no knowledge of
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Compile structures at table creation time
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Other Details in Paper

* Cvs. SQL type challenges

* Interoperability with SQL
Server
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Does it Work?
Hekaton compared to SQL Server:
10 — 20X reduction in CPU cycles
15X improvement in throughput

Near linear scalability
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Hekaton
Eliminates locks and instructions by
Lock free data structures
Optimistic concurrency control
Compiled C code for stored procs

Completely within SQL Server!
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Real-Time Analytical Processing with SQL Server
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ABSTRACT

Over the last two releases SQL Server has integrated two special-
ized engines into the core system: the Apollo column store engine
for analytical workloads and the Hekaton in-memory engine for
high-performance OLTP workloads. There is an increasing demand
for real-time analytics, that is, for running analytical queries and
reporting on the same system as transaction processing so as to have
access to the freshest data. SQL Server 2016 will include enhance-
ments to column store indexes and in-memory tables that signifi-
cantly improve performance on such hybrid workloads. This paper
describes four such enhancements: column store indexes on in-
memory tables, making secondary column store indexes on disk-
based tables updatable, allowing B-tree indexes on primary column
store indexes, and further speeding up the column store scan oper-
ator.

which is clearly prohibitively expensive. Vice versa, lookups are
very fast in in-memory tables but complete table scans are expen-
sive because of the large numbers of cache and TLB misses and the
high instruction and cycle count associated with row-at-a-time pro-
cessing.

This paper describes four enhancements in the SQL Server 2016
release that are designed to improve performance on analytical que-
ries in general and on hybrid workloads, in particular.

1. Columnstore indexes on in-memory tables. Users will be
able to create columnstore indexes on in-memory tables in the
same way as they can now for disk-based tables. The goal is
to greatly speed up queries that require complete table scans.

2. Updatable secondary columnstore indexes. Secondary CSIs
on disk-based tables were introduced in SQL Server 2012.
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Hekaton Discussion
Ruling out partitioning

Overhead of commit validation

Integration with SQL Server
(must explicitly declare

table types)
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