
Hekaton

Cristian Diaconu, et. al.
SIGMOD 2013

Michael Abebe
CS 848 (January 2018)

1

Tidying up SQL Server

2

3

Discard
anything
that does
not bring
you joy

4

2006 Databases*

locks disk

Buffer poolThreads

5

Designed to mask disk latency

1970s Databases

locks disk

Buffer poolThreads

6

~1 MB

~100 ms seek

1970s Hardware

7

10-100 GB

~10 ms seek

10,000 x

10 x

2006 Hardware

8

10-100 GB

50 byte records
120 months
10 mil l ion users =
60 GB
Data fits in memory

2006 Databases*

9

Discard
anything
that does
not bring
you joy

10

locks disk

Buffer poolThreads

Increased contention

2006 Databases*

11

Buffer poolThreads

How to ensure correctness?

2006 Databases*

12

Discarding Everything
The End of an Architectural Era

(It’s Time for a Complete Rewrite)

Michael Stonebraker

Samuel Madden

Daniel J. Abadi
Stavros Harizopoulos

MIT CSAIL

{stonebraker, madden, dna,
stavros}@csail.mit.edu

Nabil Hachem
AvantGarde Consulting, LLC

nhachem@agdba.com

Pat Helland
Microsoft Corporation

phelland@microsoft.com

ABSTRACT

In previous papers [SC05, SBC+07], some of us predicted the end
of “one size fits all” as a commercial relational DBMS paradigm.
These papers presented reasons and experimental evidence that
showed that the major RDBMS vendors can be outperformed by
1-2 orders of magnitude by specialized engines in the data
warehouse, stream processing, text, and scientific database
markets.

Assuming that specialized engines dominate these markets over

time, the current relational DBMS code lines will be left with the
business data processing (OLTP) market and hybrid markets
where more than one kind of capability is required. In this paper
we show that current RDBMSs can be beaten by nearly two
orders of magnitude in the OLTP market as well. The
experimental evidence comes from comparing a new OLTP
prototype, H-Store, which we have built at M.I.T., to a popular
RDBMS on the standard transactional benchmark, TPC-C.

We conclude that the current RDBMS code lines, while
attempting to be a “one size fits all” solution, in fact, excel at
nothing. Hence, they are 25 year old legacy code lines that should

be retired in favor of a collection of “from scratch” specialized
engines. The DBMS vendors (and the research community)
should start with a clean sheet of paper and design systems for
tomorrow’s requirements, not continue to push code lines and
architectures designed for yesterday’s needs.

1. INTRODUCTION
The popular relational DBMSs all trace their roots to System R
from the 1970s. For example, DB2 is a direct descendent of

System R, having used the RDS portion of System R intact in
their first release. Similarly, SQL Server is a direct descendent of
Sybase System 5, which borrowed heavily from System R.
Lastly, the first release of Oracle implemented the user interface
from System R.

All three systems were architected more than 25 years ago, when
hardware characteristics were much different than today.

Processors are thousands of times faster and memories are
thousands of times larger. Disk volumes have increased
enormously, making it possible to keep essentially everything, if
one chooses to. However, the bandwidth between disk and main
memory has increased much more slowly. One would expect this
relentless pace of technology to have changed the architecture of
database systems dramatically over the last quarter of a century,
but surprisingly the architecture of most DBMSs is essentially
identical to that of System R.

Moreover, at the time relational DBMSs were conceived, there
was only a single DBMS market, business data processing. In the

last 25 years, a number of other markets have evolved, including
data warehouses, text management, and stream processing. These
markets have very different requirements than business data
processing.

Lastly, the main user interface device at the time RDBMSs were
architected was the dumb terminal, and vendors imagined
operators inputting queries through an interactive terminal
prompt. Now it is a powerful personal computer connected to the
World Wide Web. Web sites that use OLTP DBMSs rarely run
interactive transactions or present users with direct SQL
interfaces.

In summary, the current RDBMSs were architected for the
business data processing market in a time of different user

interfaces and different hardware characteristics. Hence, they all
include the following System R architectural features:

 Disk oriented storage and indexing structures

 Multithreading to hide latency
 Locking-based concurrency control mechanisms
 Log-based recovery

Of course, there have been some extensions over the years,
including support for compression, shared-disk architectures,
bitmap indexes, support for user-defined data types and operators,
etc. However, no system has had a complete redesign since its

inception. This paper argues that the time has come for a
complete rewrite.

A previous paper [SBC+07] presented benchmarking evidence

that the major RDBMSs could be beaten by specialized
architectures by an order of magnitude or more in several
application areas, including:

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

OLTP Through the Looking Glass, and What We Found There
Stavros Harizopoulos

HP Labs
Palo Alto, CA

stavros@hp.com

Michael StonebrakerSamuel MaddenDaniel J. Abadi
Yale University
New Haven, CT

dna@cs.yale.edu

Massachusetts Institute of Technology
Cambridge, MA

{madden, stonebraker}@csail.mit.edu

ABSTRACT
Online Transaction Processing (OLTP) databases include a suite
of features — disk-resident B-trees and heap files, locking-based
concurrency control, support for multi-threading — that were
optimized for computer technology of the late 1970’s. Advances
in modern processors, memories, and networks mean that today’s
computers are vastly different from those of 30 years ago, such
that many OLTP databases will now fit in main memory, and
most OLTP transactions can be processed in milliseconds or less.
Yet database architecture has changed little.

Based on this observation, we look at some interesting variants of
conventional database systems that one might build that exploit
recent hardware trends, and speculate on their performance
through a detailed instruction-level breakdown of the major com-
ponents involved in a transaction processing database system
(Shore) running a subset of TPC-C. Rather than simply profiling
Shore, we progressively modified it so that after every feature
removal or optimization, we had a (faster) working system that
fully ran our workload. Overall, we identify overheads and opti-
mizations that explain a total difference of about a factor of 20x
in raw performance. We also show that there is no single “high
pole in the tent” in modern (memory resident) database systems,
but that substantial time is spent in logging, latching, locking, B-
tree, and buffer management operations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems — transaction process-
ing; concurrency.

General Terms
Measurement, Performance, Experimentation.

Keywords
Online Transaction Processing, OLTP, main memory transaction
processing, DBMS architecture.

1. INTRODUCTION
Modern general purpose online transaction processing (OLTP)
database systems include a standard suite of features: a collection
of on-disk data structures for table storage, including heap files
and B-trees, support for multiple concurrent queries via locking-
based concurrency control, log-based recovery, and an efficient
buffer manager. These features were developed to support trans-
action processing in the 1970’s and 1980’s, when an OLTP data-
base was many times larger than the main memory, and when the
computers that ran these databases cost hundreds of thousands to
millions of dollars.

Today, the situation is quite different. First, modern processors
are very fast, such that the computation time for many OLTP-
style transactions is measured in microseconds. For a few thou-
sand dollars, a system with gigabytes of main memory can be
purchased. Furthermore, it is not uncommon for institutions to
own networked clusters of many such workstations, with aggre-
gate memory measured in hundreds of gigabytes — sufficient to
keep many OLTP databases in RAM.

Second, the rise of the Internet, as well as the variety of data
intensive applications in use in a number of domains, has led to a
rising interest in database-like applications without the full suite
of standard database features. Operating systems and networking
conferences are now full of proposals for “database-like” storage
systems with varying forms of consistency, reliability, concur-
rency, replication, and queryability [DG04, CDG+06, GBH+00,
SMK+01].

This rising demand for database-like services, coupled with dra-
matic performance improvements and cost reduction in hard-
ware, suggests a number of interesting alternative systems that
one might build with a different set of features than those pro-
vided by standard OLTP engines.

1.1 Alternative DBMS Architectures
Obviously, optimizing OLTP systems for main memory is a good
idea when a database fits in RAM. But a number of other data-
base variants are possible; for example:

• Logless databases. A log-free database system might either
not need recovery, or might perform recovery from other sites
in a cluster (as was proposed in systems like Harp [LGG+91],
Harbor [LM06], and C-Store [SAB+05]).

• Single threaded databases. Since multi-threading in OLTP
databases was traditionally important for latency hiding in the

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06...$5.00.

13

PartitionExecute serially

Execution thread
per partition

Partitioned Execution

14

Tput = (1 Core Tput) (# Cores)x

Partitioned Execution

15

Partitioned Execution
Multi-partition transactions?

Costly coordination

16

Tput =
(# Cores)(1 Core Tput) xScalability

Partitioned Execution
Multi-partition transactions?

Based on
partition quality

17

Tput = (1 Core Tput)
(# Cores)

x Scalability

Eliminate contention
Eliminate locksEliminate instructions

How to improve throughput?

18

Eliminate instructions

Eliminate locks

Compiler

Storage
Engine

Runtime

Hekaton

19

Discard
anything
that does
not bring
you joy
unless it
makes you money

20

Compiler

Storage
Engine

Runtime

Metadata

Optimizer

Storage

Processor

Hekaton in SQL Server

21

Hekaton
Eliminate instructions

Eliminate locks

Compiler

Storage
Engine

Runtime

22

Indexes
Lock free: Hash Table and B-Tree

The Bw-Tree: A B-tree for New Hardware
Platforms

Justin J. Levandoski 1, David B. Lomet 2, Sudipta Sengupta 3

Microsoft Research
Redmond, WA 98052, USA

1justin.levandoski@microsoft.com, 2lomet@microsoft.com, 3sudipta@microsoft.com

Abstract— The emergence of new hardware and platforms has
led to reconsideration of how data management systems are
designed. However, certain basic functions such as key indexed
access to records remain essential. While we exploit the common
architectural layering of prior systems, we make radically new
design decisions about each layer. Our new form of B-tree, called
the Bw-tree achieves its very high performance via a latch-free
approach that effectively exploits the processor caches of modern
multi-core chips. Our storage manager uses a unique form of log
structuring that blurs the distinction between a page and a record
store and works well with flash storage. This paper describes the
architecture and algorithms for the Bw-tree, focusing on the main
memory aspects. The paper includes results of our experiments
that demonstrate that this fresh approach produces outstanding
performance.

I. INTRODUCTION

A. Atomic Record Stores

There has been much recent discussion of No-SQL systems,
which are essentially atomic record stores (ARSs) [1]. While
some of these systems are intended as stand-alone products,
an atomic record store can also be a component of a more
complete transactional system, given appropriate control op-
erations [2], [3]. Indeed, one can regard a database system as
including an atomic record store as part of its kernel.

An ARS supports the reading and writing of individual
records, each identified by a key. Further, a tree-based ARS
supports high performance key-sequential access to designated
subranges of the keys. It is this combination of random and
key-sequential access that has made B-trees the indexing method
of choice within database systems.

However, an ARS is more than an access method. It includes
the management of stable storage and the requirement that
its updates be recoverable should the system crash. It is the
performance of the ARS of this more inclusive form that is
the foundation for the performance of any system in which the
ARS is embedded, including full function database systems.

This paper introduces a new ARS that provides very high
performance. We base our ARS on a new form of B-tree that
we call the Bw-tree. The techniques that we introduce make
the Bw-tree and its associated storage manager particularly ap-
propriate for the new hardware environment that has emerged
over the last several years.

Our focus in this paper is on the main memory aspects of
the Bw-tree. We describe the details of our latch-free tech-
nique, i.e., how we can do updates and structure modification

operations without setting latches. Our approach also carefully
avoids cache line invalidations, hence leading to substantially
better caching performance as well. We describe how we use
our log structured storage manager at a high level, but leave
the specifics to another paper.

B. The New Environment

Database systems have mostly exploited the same storage
and CPU infrastructure since the 1970s. That infrastructure
used disks for persistent storage. Disk latency is now analo-
gous to a round trip to Pluto [4]. It used processors whose
uni-processor performance increased with Moore’s Law, thus
limiting the need for high levels of concurrent execution on a
single machine. Processors are no longer providing ever higher
uni-core performance. Succinctly, ”this changes things”.

1) Design for Multi-core: We live in a high peak perfor-
mance multi-core world. Uni-core speed will at best increase
modestly, thus we need to get better at exploiting a large
number of cores by addressing at least two important aspects:

1) Multi-core cpus mandate high concurrency. But, as the
level of concurrency increases, latches are more likely
to block, limiting scalability [5].

2) Good multi-core processor performance depends on high
CPU cache hit ratios. Updating memory in place results
in cache invalidations, so how and when updates are
done needs great care.

Addressing the first issue, the Bw-tree is latch-free, ensuring a
thread never yields or even re-directs its activity in the face of
conflicts. Addressing the second issue, the Bw-tree performs
“delta” updates that avoid updating a page in place, hence
preserving previously cached lines of pages.

2) Design for Modern Storage Devices: Disk latency is a
major problem. But even more crippling is their low I/O ops
per second. Flash storage offers higher I/O ops per second at
lower cost. This is key to reducing costs for OLTP systems.
Indeed Amazon’s DynamoDB includes an explicit ability to
exploit flash [6]. Thus the Bw-tree targets flash storage.

Flash has some performance idiosyncracies, however. While
flash has fast random and sequential reads, it needs an erase cy-
cle prior to write, making random writes slower than sequential
writes [7]. While flash SSDs typically have a mapping layer
(the FTL) to hide this discrepancy from users, a noticeable
slowdown still exists. As of 2011, even high-end FusionIO
drives exhibit a 3x faster sequential write performance than

Building a Bw-Tree Takes More Than Just Buzz Words
Ziqi Wang

Carnegie Mellon University
ziqiw@cs.cmu.edu

Andrew Pavlo
Carnegie Mellon University

pavlo@cs.cmu.edu

Hyeontaek Lim
Carnegie Mellon University

hl@cs.cmu.edu

Viktor Leis
TU München
leis@in.tum.de

Huanchen Zhang
Carnegie Mellon University
huanche1@cs.cmu.edu

Michael Kaminsky
Intel Labs

michael.e.kaminsky@intel.com

David G. Andersen
Carnegie Mellon University

dga@cs.cmu.edu

ABSTRACT
In 2013, Microsoft Research proposed the Bw-Tree (humorously
termed the “Buzz Word Tree”), a lock-free index that provides high
throughput for transactional database workloads in SQL Server’s
Hekaton engine. The Bw-Tree avoids locks by appending delta
record to tree nodes and using an indirection layer that allows it to
atomically update physical pointers using compare-and-swap (CaS).
Correctly implementing this techniques requires careful attention
to detail. Unfortunately, the Bw-Tree papers from Microsoft are
missing important details and the source code has not been released.

This paper has two contributions: First, it is the missing guide
for how to build a lock-free Bw-Tree. We clarify missing points in
Microsoft’s original design documents and then present techniques
to improve the index’s performance. Although our focus here is on
the Bw-Tree, many of our methods apply more broadly to designing
and implementing future lock-free in-memory data structures. Our
experimental evaluation shows that our optimized variant achieves
1.1–2.5⇥ better performance than the original Microsoft proposal
for highly concurrent workloads. Second, our evaluation shows
that despite our improvements, the Bw-Tree still does not perform
as well as other concurrent data structures that use locks.
ACM Reference Format:
Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes
More Than Just Buzz Words. In Proceedings of 2018 International Conference
on Management of Data (SIGMOD’18). ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3183713.3196895

1 INTRODUCTION
Lock-free data structures are touted as being ideal for today’s multi-
core CPUs. They are, however, notoriously di�cult to implement
for several reasons [10]. First, writing e�cient and robust lock-free1
code requires the developer to �gure out all possible race conditions,
the interactions between which can be complex. Furthermore, The
point that concurrent threads synchronize with each other are

1 In this the paper, we always use the term “lock” when referring to “latch”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196895

usually not explicitly stated in the serial version of the algorithm.
Programmers often implement lock-free algorithms incorrectly
and end up with busy-waiting loops. Another challenge is that
lock-free data structures require safe memory reclamation that is
delayed until all readers are �nished with the data. Finally, atomic
primitives can be a performance bottleneck themselves if they are
used carelessly.

One example of a lock-free data structure is the Bw-Tree from
Microsoft Research [29]. The high-level idea of the Bw-Tree is
that it avoids locks by using an indirection layer that maps logical
identi�ers to physical pointers for the tree’s internal components.
Threads then apply concurrent updates to a tree node by appending
delta records to that node’s modi�cation log. Subsequent operations
on that node must replay these deltas to obtain its current state.

The indirection layer and delta records provide two bene�ts.
First, it avoids coherence tra�c of locks by decomposing every
global state change into atomic steps. Second, it incurs fewer cache
invalidations on a multi-core CPU because threads append delta
records to make changes to the index instead of overwriting exist-
ing nodes. The original Bw-Tree paper [29] claims that this lower
synchronization and cache coherence overhead provides better
scalability than lock-based indexes.

To the best of our knowledge, however, there is no comprehen-
sive evaluation of the Bw-Tree. The original paper lacks detailed
descriptions of critical components and runtime operations. For
example, they do not provide a scalable solution for safe memory
reclamation or e�cient iteration. Microsoft’s Bw-Tree may support
these features, but the implementation details are unknown. This
paper aims to be a more thorough investigation of the Bw-Tree: to
supply the missing details, propose improvements, and to provide
a more comprehensive evaluation of the index.

Our �rst contribution is a complete design for how to build an
in-memory Bw-Tree. We present the missing features required for a
correct implementation, including important corner cases missing
from the original description of the data structure. We then present
several additional enhancements and optimizations that improve
the index’s performance. The culmination of this e�ort is our open-
source version called the OpenBw-Tree. Our experiments show
that the OpenBw-Tree outperforms what we understand to be the
original Bw-Tree design by 1.1–2.5⇥ for insert-heavy workloads
and by 1.1–1.4⇥ for read-heavy workloads.

Our second contribution is to compare the OpenBw-Tree against
four other state-of-the-art in-memory data structures: (1) SkipList [8],
(2) Masstree [31], (3) a B+Tree with optimistic lock coupling [22]
and (4) ART [20] with optimistic lock coupling [22]. Our results

23

Storage Engine

John London $80

Jane Paris $99

Larry Rome $70

PayloadLinks

J

L

B-TreeEliminate locks

24

Storage Engine

John London $80

Jane Paris $99

Larry Rome $75

PayloadLinks

J

L

B-TreeEliminate locks

Larry Rome $70

25

Storage Engine

John London $80

Jane Paris $99

Larry Rome $75

PayloadLinks

J

L

B-TreeWhich to read?

Larry Rome $70

It depends!

26

Hekaton

Eliminate locks

Compiler

Storage
Engine

Runtime

Eliminate instructions

27

Concurrency Control

John London $80

Jane Paris $99

Larry Rome $75

PayloadLinks

J

L

B-TreeWhich to read?

Larry Rome $70

It depends!

28

Concurrency Control

John London $80

Jane Paris $99

0 20 Larry Rome $75

PayloadLinks

J

L

B-Tree

20 ∞ Larry Rome $70

Timestamps

29

Concurrency Control

5 ∞ John London $80

7 ∞ Jane Paris $99

0 20 Larry Rome $75

PayloadLinks

J

L

B-Tree

20 ∞ Larry Rome $70

Timestamps

30

Concurrency Control

0 20 Larry Rome $75
PayloadLinksTimestamps

Determine record visibility by valid
time (begin and end)

Assign transactions:

Commit time --- for serialization history
Logical Read Time --- for visibility

31

Concurrency Control
Serializability requires:

No updates to read records

Scans do not return new versions

Validate at commit time!
Authors claim this is cheap

32

Concurrency Control
High-Performance Concurrency Control

Mechanisms for Main-Memory Databases
Per-Åke Larson1, Spyros Blanas2, Cristian Diaconu1,
Craig Freedman1, Jignesh M. Patel2, Mike Zwilling1

Microsoft1, University of Wisconsin – Madison2
{palarson, cdiaconu, craigfr,mikezw}@microsoft.com, {sblanas, jignesh}@cs.wisc.edu

ABSTRACT
A database system optimized for in-memory storage can support
much higher transaction rates than current systems. However,
standard concurrency control methods used today do not scale to
the high transaction rates achievable by such systems. In this pa-
per we introduce two efficient concurrency control methods spe-
cifically designed for main-memory databases. Both use multiver-
sioning to isolate read-only transactions from updates but differ in
how atomicity is ensured: one is optimistic and one is pessimistic.
To avoid expensive context switching, transactions never block
during normal processing but they may have to wait before com-
mit to ensure correct serialization ordering. We also implemented
a main-memory optimized version of single-version locking. Ex-
perimental results show that while single-version locking works
well when transactions are short and contention is low perfor-
mance degrades under more demanding conditions. The multiver-
sion schemes have higher overhead but are much less sensitive to
hotspots and the presence of long-running transactions.

1. INTRODUCTION
Current database management systems were designed assuming
that data would reside on disk. However, memory prices continue
to decline; over the last 30 years they have been dropping by a
factor of 10 every 5 years. The latest Oracle Exadata X2-8 system
ships with 2TB of main memory and it is likely that we will see
commodity servers with multiple terabytes of main memory with-
in a few years. On such systems the majority of OLTP databases
will fit entirely in memory, and even the largest OLTP databases
will keep the active working set in memory, leaving only cold,
infrequently accessed data on external storage.
A DBMS optimized for in-memory storage and running on a
many-core processor can support very high transaction rates.
Efficiently ensuring isolation between concurrently executing
transactions becomes challenging in such an environment. Current
DBMSs typically rely on locking but in a traditional implementa-
tion with a separate lock manager the lock manager becomes a
bottleneck at high transaction rates as shown in experiments by
Johnson et al [15]. Long read-only transactions are also problem-
atic as readers may block writers.
This paper investigates high-performance concurrency control
mechanisms for OLTP workloads in main-memory databases. We

found that traditional single-version locking is “fragile”. It works
well when all transactions are short and there are no hotspots but
performance degrades rapidly under high contention or when the
workload includes even a single long transaction.
Decades of research has shown that multiversion concurrency
control (MVCC) methods are more robust and perform well for a
broad range of workloads. This led us to investigate how to con-
struct MVCC mechanisms optimized for main memory settings.
We designed two MVCC mechanisms: the first is optimistic and
relies on validation, while the second one is pessimistic and relies
on locking. The two schemes are mutually compatible in the sense
that optimistic and pessimistic transactions can be mixed and
access the same database concurrently. We systematically ex-
plored and evaluated these methods, providing an extensive ex-
perimental evaluation of the pros and cons of each approach. The
experiments confirmed that MVCC methods are indeed more
robust than single-version locking.
This paper makes three contributions. First, we propose an opti-
mistic MVCC method designed specifically for memory resident
data. Second, we redesign two locking-based concurrency control
methods, one single-version and one multiversion, to fully exploit
a main-memory setting. Third, we evaluate the effectiveness of
these three different concurrency control methods for different
workloads. The insights from this study are directly applicable to
high-performance main memory databases: single-version locking
performs well only when transactions are short and contention is
low; higher contention or workloads including some long transac-
tions favor the multiversion methods; and the optimistic method
performs better than the pessimistic method.
The rest of the paper is organized as follows. Section 2 covers
preliminaries of multiversioning and describes how version visi-
bility and updatability are determined based on version
timestamps. The optimistic scheme and the pessimistic scheme
are described in Section 3 and Section 4, respectively. Section 5
reports performance results. Related work is discussed in Section
6, and Section 7 offers concluding remarks. Proofs of correctness
are provided in an online addendum to this paper and at [27].

2. MV STORAGE ENGINE
A transaction is by definition serializable if its reads and writes
logically occur as of the same time. The simplest and most widely
used MVCC method is snapshot isolation (SI). SI does not guar-
antee serializability because reads and writes logically occur at
different times, reads at the beginning of the transaction and
writes at the end. However, a transaction is serializable if we can
guarantee that it would see exactly the same data if all its reads
were repeated at the end of the transaction.
To ensure that a transaction T is serializable we must guarantee
that the following two properties hold:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 38th International Conference on Very Large Data Bases,

August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 4

Copyright 2011 VLDB Endowment 2150-8097/11/12... $ 10.00.

298

33

Other Details in Paper
• Commit dependencies

• Durability

• Garbage Collection

34

Hekaton

Eliminate locks

Compiler

Storage
Engine

Runtime

Eliminate instructions

35

Interpreters
SELECT * FROM T WHERE T.ID > @id SQL

Query Plan

SCAN T

FILTER T.ID > @id

36

Interpreters
SELECT * FROM T WHERE T.ID > @id SQL

filter::getNext()
for (;;)

row = child.getNext()
if ! filter(row)

return row

Query Execution

Recursive calls

Easy to read

37

Hekaton Compiler
SELECT * FROM T WHERE T.ID > @id SQL

label: filter_getNext
for (;;)

goto scan_getNext
if ! filter(row)

goto output

Minimize
instructions

Hard to read
Query Execution

38

Hekaton Compiler

Larry Rome $75
Payload

Storage engine has no knowledge of
records structures

Compile structures at table creation time

39

Other Details in Paper

• C vs. SQL type challenges

• Interoperability with SQL
Server

40

Does it Work?

10 – 20X reduction in CPU cycles

Hekaton compared to SQL Server:

15X improvement in throughput

Near linear scalability

41

Hekaton

Lock free data structures

Completely within SQL Server!

Optimistic concurrency control
Compiled C code for stored procs

Eliminates locks and instructions by

42

Hekaton Today
Trekking Through Siberia: Managing Cold Data in a

Memory-Optimized Database
Ahmed Eldawy*

University of Minnesota
eldawy@cs.umn.edu

Justin Levandoski
Microsoft Research

justin.levandoski@microsoft.com

Per-Åke Larson
Microsoft Research

palarson@microsoft.com

ABSTRACT
Main memories are becoming sufficiently large that most OLTP
databases can be stored entirely in main memory, but this may not
be the best solution. OLTP workloads typically exhibit skewed
access patterns where some records are hot (frequently accessed)
but many records are cold (infrequently or never accessed). It is still
more economical to store the coldest records on secondary storage
such as flash. This paper introduces Siberia, a framework for
managing cold data in the Microsoft Hekaton main-memory
database engine. We discuss how to migrate cold data to secondary
storage while providing an interface to the user to manipulate both
hot and cold data that hides the actual data location. We describe
how queries of different isolation levels can read and modify data
stored in both hot and cold stores without restriction while
minimizing number of accesses to cold storage. We also show how
records can be migrated between hot and cold stores while the
DBMS is online and active. Experiments reveal that for cold data
access rates appropriate for main-memory optimized databases, we
incur an acceptable 7-14% throughput loss.

1. INTRODUCTION
Database systems have traditionally been designed under the
assumption that data is disk resident and paged in and out of
memory as needed. However, the drop in memory prices over the
past 30 years is invalidating this assumption. Several database
engines have emerged that store the entire database in main
memory [3, 5, 7, 9, 11, 14, 19].

Microsoft has developed a memory-optimized database engine,
code named Hekaton, targeted for OLTP workloads. The Hekaton
engine is fully integrated into SQL Server and shipped in the 2014
release. It does not require a database be stored entirely in main
memory; a user can declare only some tables to be in-memory
tables managed by Hekaton. Hekaton tables can be queried and
updated in the same way as regular tables. To speed up processing
even further, a T-SQL stored procedure that references only
Hekaton tables can be compiled into native machine code. Further
details about the design of Hekaton can be found in [4], [11].

OLTP workloads often exhibit skewed access patterns where some
records are “hot” and accessed frequently (the working set) while
others are “cold” and accessed infrequently. Clearly, good

performance depends on the hot records residing in memory. Cold
records can be moved to cheaper external storage such as flash with
little effect on overall system performance.

The initial version of Hekaton requires that a memory-optimized
table fits entirely in main memory. However, even a frequently
accessed table may exhibit access skew where only a small fraction
of its rows are hot while many rows are cold. We are investigating
techniques to automatically migrate cold rows to a “cold store”
residing on external storage while the hot rows remain in the in-
memory “hot store”. The separation into two stores is only visible
to the storage engine; the upper layers of the engine (and
applications) are entirely unaware of where a row is stored.
The goal of our project, called Project Siberia, is to enable the
Hekaton engine to automatically and transparently maintain cold
data on cheaper secondary storage. We divide the problem of
managing cold data into four subproblems.
x Cold data classification: efficiently and non-intrusively

identify hot and cold data. We propose to do this by logging
record accesses, possibly only a sample, and estimating
accesses frequencies off line as described in more detail in
[13]. One could also use a traditional caching approach such
as LRU or LRU-2 but the overhead is high in both space and
time. As reported in [13], experiments showed that
maintaining a simple LRU chain added 25% overhead to the
cost of lookups in an in-memory hash table and added 16 bytes
to each record. This we deemed too high a price.

x Cold data storage: evaluation of cold storage device options
and techniques for organizing data on cold storage.

x Cold storage access reduction: reducing unnecessary accesses
to cold storage for both point and range lookups by
maintaining compact and accurate in-memory access filters.
We propose to achieve this by storing in memory compact
summaries of the cold store content. We are investigating two
techniques: a version of Bloom filters for point lookups and
range filters, a new compact data structure that also supports
range queries. More details can be found in [1, 17].

x Cold data access and migration mechanisms: mechanisms for
efficiently migrating, reading, and updating data on cold
storage that dovetail with Hekaton’s optimistic multi-version
concurrency control scheme [11].

In this paper, we focus on the fourth point, namely, how to migrate
records to and from the cold store and how to access and update
records in the cold store in a transactionally consistent manner. This
paper is not concerned with exact indexing and storage mechanisms
used; all we assume is that the cold store provides methods for
inserting, deleting, and retrieving records. To allow for maximum
flexibility in the choice of cold store implementations our only

* Work done while at Microsoft Research
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 40th International Conference on Very
Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 11
Copyright 2014 VLDB Endowment 2150-8097/14/07

Real-Time Analytical Processing with SQL Server
Per-Åke Larson, Adrian Birka, Eric N. Hanson,

Weiyun Huang, Michal Nowakiewicz, Vassilis Papadimos
Microsoft

{palarson, adbirka, ehans, weiyh, michalno, vasilp}@microsoft.com

ABSTRACT
Over the last two releases SQL Server has integrated two special-
ized engines into the core system: the Apollo column store engine
for analytical workloads and the Hekaton in-memory engine for
high-performance OLTP workloads. There is an increasing demand
for real-time analytics, that is, for running analytical queries and
reporting on the same system as transaction processing so as to have
access to the freshest data. SQL Server 2016 will include enhance-
ments to column store indexes and in-memory tables that signifi-
cantly improve performance on such hybrid workloads. This paper
describes four such enhancements: column store indexes on in-
memory tables, making secondary column store indexes on disk-
based tables updatable, allowing B-tree indexes on primary column
store indexes, and further speeding up the column store scan oper-
ator.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – relational databases,
Microsoft SQL Server

Keywords
In-memory OLTP, column store, OLAP, operational analytics,
real-time analytics, hybrid transactional and analytical processing.

1. INTRODUCTION
Transactional processing (OLTP) and analytical processing are tra-
ditionally separated and running on different systems. Separation
reduces the load on transactional systems which makes it easier to
ensure consistent throughput and response times for business criti-
cal applications. However, users are increasingly demanding access
to ever fresher data also for analytical purposes. The freshest data
resides on transactional systems so the most up-to-date results are
obtained by running analytical queries directly against the transac-
tional database. This means that the database system must be able
to efficiently handle transactional and analytical processing concur-
rently. SQL Server 2016 will include several enhancements that are
targeted primarily for such hybrid workloads.

Over the last two releases SQL Server has added column store in-
dexes (CSI) and batch mode (vectorized) processing to speed up
analytical queries and the Hekaton in-memory engine to speed up
OLTP transactions. These features have been very successful; cus-
tomers have reported orders-of-magnitude improvements. How-
ever, each feature is optimized for specific workload patterns. Col-
umnstore indexes are optimized for large scans but operations such
as point lookups or small range scans also require a complete scan,

which is clearly prohibitively expensive. Vice versa, lookups are
very fast in in-memory tables but complete table scans are expen-
sive because of the large numbers of cache and TLB misses and the
high instruction and cycle count associated with row-at-a-time pro-
cessing.

This paper describes four enhancements in the SQL Server 2016
release that are designed to improve performance on analytical que-
ries in general and on hybrid workloads, in particular.

1. Columnstore indexes on in-memory tables. Users will be
able to create columnstore indexes on in-memory tables in the
same way as they can now for disk-based tables. The goal is
to greatly speed up queries that require complete table scans.

2. Updatable secondary columnstore indexes. Secondary CSIs
on disk-based tables were introduced in SQL Server 2012.
However, adding a CSI makes the table read-only. This limi-
tation will be remedied in SQL Server 2016.

3. B-tree indexes on primary columnstore indexes. A CSI can
serve as the base storage for a table. This storage organization
is well suited for data warehousing applications because it is
space efficient and scans are fast. However, point lookups and
small range queries are very slow because they also require a
complete scan. To speed up such operations users will be able
to create normal B-tree indexes on primary column stores.

4. Column store scan improvements. The new scan operator
makes use of SIMD instructions and the handling of filters and
aggregates has been extended and improved. Faster scans
speed up many analytical queries considerably.

In this paper we use the terms primary index or base index for the
index that serves as the base storage for the table and the term sec-
ondary index for all other indexes on a table. The corresponding
terms traditionally used in the SQL Server context are clustered
index and non-clustered index but they no longer seem to convey
quite the right meaning.

The rest of the paper is organized as follows. Section 2 gives an
overview of the design and status of column store indexes and of
the Hekaton engine as implemented in SQL Server 2014. Sections
3 to 6 describe the four enhancements mentioned above including
some initial performance results. Note that the experiments were
run on early builds of the system that had not yet been fully opti-
mized. Section 7 contains a brief summary of related work.

2. BACKGROUND ON SQL SERVER
As illustrated in Figure 1, SQL Server 2014 integrates three differ-
ent engines.

1. The classical SQL Server engine primarily used for processing
disk-based tables in row format. It can also process data from
the two other stores albeit slower than the specialized engines.

2. The Apollo engine processes data in columnar format and is
designed to speed up analytical queries.

3. The Hekaton engine processes data in in-memory tables and
is designed to speed up OLTP workloads.

This work is licensed under the Creative Commons Attribution-NonCommer-
cial-NoDerivs 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain permission prior to
any use beyond those covered by the license. Contact copyright holder by
emailing info@vldb.org. Articles from this volume were invited to present their
results at the 41st International Conference on Very Large Data Bases, August
31st – September 4th 2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

1740

43

Hekaton Discussion

Overhead of commit validation

Ruling out partitioning

Integration with SQL Server
(must explicitly declare
table types)

44

Discard
anything
that does
not bring
you joy

